Moving in the Anthropocene: Global reductions in terrestrial mammalian movements

Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individuals from 57 mammal species (Fig. 1 and table S2). Mean species mass ranged from 0.49 to 3940 kg and included herbivores, carnivores, and omnivores (n = 28, 11, and 18 species, respectively). For each individual, we annotated locations with the Human Footprint Index (HFI), an index with a global extent that combines multiple proxies of human influence: the extent of built environments, crop land, pasture land, human population density, nighttime lights, railways, roads, and navigable waterways (9) (see supplementary materials for details). The HFI ranges from 0 (natural environments; e.g., the Brazilian Pantanal) to 50 (high-density built environments; e.g., New York City).

In addition to the human footprint, we included other covariates that are known to influence mammalian movements. Because individuals may need to cover a larger area to gather sufficient resources, mammals generally move farther in environments with lower productivity (10). To capture this effect, we annotated locations with the Normalized Difference Vegetation Index (NDVI), a well-established, satellite-derived measure of resource abundance for both herbivores and carnivores (11). Because an allometric scaling relationship shows that animals of greater body size usually move farther (12), and because diet may influence movements as a result of differences in foraging costs and availability of resource types (13, 14), we annotated the database with species averages for body size and dietary guild (i.e., carnivore, herbivore, or omnivore).

We then calculated displacements as the distance between subsequent GPS locations of each individual at nine time scales (15) ranging from 1 hour to 10 days. For each individual at each time scale, we calculated the 0.5 and 0.95 quantile of displacement. The combination of different time scales and quantile allowed us to examine the effect of the human footprint on both the median (0.5 quantile) and long-distance (0.95 quantile) movements for within-day movements (e.g., 1-hour time scale) up to longer time displacements of more than 1 week (e.g., 10-day time scale). We used linear mixed-effects models that, in addition to all covariates (i.e., NDVI, body mass, diet), also accounted for taxonomy and spatial autocorrelation (see supplementary materials for details).

We found strong negative effects of the human footprint on median and long-distance displacements of terrestrial mammals (Fig. 2, Fig. 3A, and table S3). Displacements of individuals (across species) living in areas of high footprint (HFI = 30) were shorter than displacements of individuals living in areas of low footprint (HFI = 0) by as much as a factor of 3. For example, median displacements for carnivores over 10 days were 3.3 ± 1.4 km in areas of high footprint versus 6.9 ± 1.3 km in areas of low footprint (Fig. 2A and table S3). Likewise, the maximum displacement distances for carnivores at the 10-day scale averaged 6.6 ± 1.4 km in areas of high footprint versus 21.5 ± 1.4 km in areas of low footprint (Fig. 2B and table S3). The effect was significant on all temporal scales with 8 hours or more between locations.
The effect was not significant at shorter time scales (Fig. 3A, 1 to 4 hours), which suggests that the human footprint affects ranging behavior and area use over longer time scales, rather than altering individual travel speeds (i.e., individuals may travel at the same speed if measured across short time intervals, but have more tortuous movements in areas of higher human footprint and thus remain in the same locale if displacement is measured across longer time intervals).

Reduction in movement may be attributable to (i) an individual-behavioral effect, where individuals alter their movements relative to the human footprint, or (ii) a species occurrence effect, where certain species that exhibit long-range movement simply do not occur in areas of high human footprint. To disentangle these two effects, we ran additional models where we separated the HFI into two components: (i) the individual-behavioral effect represented by the individual variability of HFI relative to the species mean (i.e., the individual HFI minus the species mean HFI), and (ii) the species occurrence effect as the mean HFI for each species. Results from the two-component model indicate behavioral as well as species effects. We found a significant behavioral effect on median displacements and on long-distance movements (i.e., movements over time scales from 8 hours to 10 days) (fig. S2A and table S4). The species occurrence effect was significant only over longer time scales (128- and 256-hour periods, or 5 and 10 days, respectively) (fig. S2B and table S4). However, we note that the estimate of the species occurrence effect is conservative because our model incorporated taxonomy as a random effect. Some variability in the data may have been accounted for by the species-level random effect rather than the species-level HFI (see table S3).

In addition to the human footprint effect, body mass, dietary guild, and resource availability were also related to movement distances. First, as expected from allometric scaling and established relationships between body size and home range size (r^2), larger species traveled farther than smaller species (Fig. 3C and tables S3 and S4). Second, we found a negative

2Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt (Main), Germany. 3Department of Biological Sciences, Goethe University, 60438 Frankfurt (Main), Germany. 4Department of Biology, University of Maryland, College Park, MD 20742, USA. 5SESYNC, University of Maryland, Annapolis, MD 21401, USA. 6Department of Biological Sciences, The University of Texas at Austin, Austin, TX 78712, USA. 7Department of Biology and Evolutionary Anthropology, Duke University, Durham, NC 27708, USA. 8Hirora Conservation Programme, Ganjira, Japan. 9Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 90183, Sweden. 10Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, Radboud University, 6500GL Nijmegen, Netherlands. 11Ecology and Conservation Graduate Program, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil. 12Department of Biological Sciences, University of Alberta, Edmonton, Canada. 13Structure and Motion Laboratory, Royal Veterinary College, University of London, London NW1 0TU, UK. 14Terrestrial Vertebrates Group, Institute of Mediterranean Agricultural and Environmental Sciences, University of Évora, Évora, Portugal. 15Centro de Ecologia, Biologia e Evolução, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal. 16Mammal Research Institute, Department of Zoology and Ecology, University of Pretoria, Hatfield 0028, Gauteng, South Africa. 17Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige (TN), Italy. 18Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. 19Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA. 20Department of Fitoecología, Universidade de Évora, Pólo da Mitra, 7002-554 Évora, Portugal. 21ICAAM-Institute of Mediterranean Agricultural and Environmental Sciences, University of Évora, Évora, Portugal. 22Centre d’Écologie, Biologie et Évolution, École Normale Supérieure, University of Paris, France. 23Phillip Island Nature Parks, Victoria, Australia. 24School of Biological Sciences, Monash University, Melbourne, Australia. 25Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA. 26Department of Biology, Fiji National University, P.O. Box 5529, Natabua, Lautoka, Fiji Islands. 27U.S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, University of Massachusetts, Amherst, MA 01003, USA. 28U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, PA 16802, USA. 29Save the Elephants, P.O. Box 54667, Nairobi 00200, Kenya. 30Department of Zoology, Oxford, Oxford OX1 3PS, UK. 31Giraffe Conservation Foundation, P.O. Box 86099, Eros, Namibia. 32German Primate Center, Behavior Ecology and Sociobiology Unit, 37077 Gottingen, Germany.

3International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Tapir Specialist Group (TSG), Rua Licuala, 622, Damha 1, Campo Grande, CEP: 79046-150, Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil. 4Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA. 5Department of Evolutionary and Environmental Biology, University of Haifa, 3498838 Haifa, Israel. 6Western Ecosystems Technology Inc., 34201 Montpelier Cedex 5, France. 7Pennsylvania Game Commission, Harrisburg, PA 17110, USA. 8American Society of Mammalogists, 94481 Grafenau, Germany. 9Department of Conservation and Natural Resources, 1990 U.S. 41 South, Marquette, MI 49855, USA. 10Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark. 11Max Planck Institute for Ornithology, Vogelwarte Radolfzell, D-78315 Radolfzell, Germany. 12Wildlife Conservation Society, Bronx, NY 10461, USA. 13University of Potsdam, Plant Ecology and Nature Conservation, 14476 Potsdam, Germany. 14Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA. 15Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, Gauteng, South Africa. 16Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige (TN), Italy. 17Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. 18Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA. 19Department of Fitoecología, Universidade de Évora, Pólo da Mitra, 7002-554 Évora, Portugal. 20ICAAM-Institute of Mediterranean Agricultural and Environmental Sciences, University of Évora, Évora, Portugal. 21Centre d’Écologie, Biologie et Évolution, École Normale Supérieure, University of Paris, France. 22Phillip Island Nature Parks, Victoria, Australia. 23School of Biological Sciences, Monash University, Melbourne, Australia. 24Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA. 25Department of Biology, Fiji National University, P.O. Box 5529, Natabua, Lautoka, Fiji Islands. 26U.S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, University of Massachusetts, Amherst, MA 01003, USA. 27U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, PA 16802, USA. 28Save the Elephants, P.O. Box 54667, Nairobi 00200, Kenya. 29Department of Zoology, Oxford, Oxford OX1 3PS, UK. 30Giraffe Conservation Foundation, P.O. Box 86099, Eros, Namibia. 31German Primate Center, Behavior Ecology and Sociobiology Unit, 37077 Gottingen, Germany.

26January 2018
Fig. 1. Locations from the GPS tracking database and the Human Footprint Index. (A) GPS relocations of 803 individuals across 57 species plotted on the global map of the Human Footprint Index (HFI) spanning from 0 (low; yellow) to 50 (high; red). (B) Examples of landscapes under HFI = 2 (the Pantanal, Brazil), HFI = 20 (Bernese Alps, Switzerland), HFI = 30 (Freising, Germany), and HFI = 42 (Albany, New York). (C) Species averages of 10-day long-distance displacement (0.95 quantile of individual displacements). Species (from top to bottom): Mongolian wild ass (*Equus hemionus hemionus*), Mongolian gazelle (*Procapra gutturosa*), giraffe (*Giraffa camelopardalis*), wolverine (*Gulo gulo*), muskox (*Ovibos moschatus*), African forest elephant (*Loxodonta africana cyclotis*), African buffalo (*Syncerus caffer*), wolf (*Canis lupus*), brown bear (*Ursus arctos*), maned wolf (*Chrysocyon brachyurus*), coyote (*Canis latrans*), leopard (*Panthera pardus*), wildcat (*Felis silvestris*), yellow baboon (*Papio cynocephalus*), tapir (*Tapirus terrestris*), roe deer (*Capreolus capreolus*), wild boar (*Sus scrofa*), European hare (*Lepus europaeus*), brushtail possum (*Trichosurus vulpecula*).

Fig. 2. Mammalian displacement in relation to the Human Footprint Index. (A) Median displacements; (B) long-distance (0.95 quantile) displacements. Both displacements decline with increasing HFI at the 10-day scale (*n* = 48 species and 624 individuals). Plots include a smoothing line from a locally weighted polynomial regression. An HFI value of 0 indicates areas of low human footprint; a value of 40 represents areas of high human footprint.
relationship between resource availability and displacement distance, such that movements were on average shorter in environments with higher resources (Fig. 3B and tables S3 and S4). These results are consistent with reports of larger home range size (17) and longer migration distance (18) in mammals living in resource-poor environments. Finally, our analyses showed that carnivores traveled on average farther per unit time than herbivores and omnivores (tables S3 and S4). These results concur with prior understanding that carnivores have larger home range sizes (24) because they need to find mobile prey and compensate for energy conversion loss through the food web. For all of these variables, effects were significant across time scales longer than 8 hours for both median and long-distance displacements.

The reduction of mammalian movements in areas of high HFI likely stems from two nonexclusive mechanisms: (i) movement barriers such as habitat change and fragmentation (19, 20) and (ii) reduced movement requirements attributable to enhanced resources (e.g., crops, supplemental feeding, and water sources (5, 27)). Studies have shown both mechanisms at work with varying responses across populations or species (see table S5 for examples). In some cases, they act together on single individuals or populations. For example, red deer in Slovenia have smaller home ranges because of the enhancement of resources via supplemental feeding and the disturbance and fragmentation caused by the presence of roads (22).

Although these mechanisms can have differential effects on population densities (i.e., increases under supplementation (23) and decreases under fragmentation (24)), the consequences of reduced vagility affect ecosystems regardless of the underlying mechanisms and go far beyond the focal individuals themselves. Animal movements are essential for ecosystem functioning because they act as mobile links (25) and mediate key processes such as seed dispersal, food web dynamics (including herbivory and predator-prey interactions), and metapopulation and disease dynamics (26). Single-species or single-site studies have shown the severe effects of reduced vagility on these processes (27, 28). The global nature of reduced vagility across mammalian species that we demonstrate here suggests consequences for ecosystem functioning worldwide. Future landscape management should strive to maintain landscape permeability by including animal movement as a key conservation metric. Ultimately, because of the critical role of animal movement in human/wildlife coexistence (29) and disease spread (30), the effects of reduced vagility may go beyond ecosystem functioning to directly affect human well-being.

REFERENCES AND NOTES

ACKNOWLEDGMENTS
Supported by the Robert Bosch Foundation and additional funding sources (see supplementary text). The data reported in this paper are available at datadryad.org (doi: 10.5061/dryad.st350). M.A.T., T.M., K.B.-G., W.F.F., J.M.T., and B.V.M. conceived the manuscript, M.A.T. and T.M. conducted the analyses and wrote the first manuscript draft. Co-authors contributed data sets and assisted with writing the final version of the manuscript.

SUPPLEMENTARY MATERIALS
www.sciencemag.org/content/359/6374/466/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 and S2
Tables S1 to S5
References (31–89)

15 February 2017; accepted 11 December 2017
10.1126/science.aam9712
Moving in the Anthropocene: Global reductions in terrestrial mammalian movements

Science 359 (6374), 466-469.
DOI: 10.1126/science.aam9712

Restrictions on roaming

Until the past century or so, the movement of wild animals was relatively unrestricted, and their travels contributed substantially to ecological processes. As humans have increasingly altered natural habitats, natural animal movements have been restricted. Tucker et al. examined GPS locations for more than 50 species. In general, animal movements were shorter in areas with high human impact, likely owing to changed behaviors and physical limitations. Besides affecting the species themselves, such changes could have wider effects by limiting the movement of nutrients and altering ecological interactions.

Science, this issue p. 466

This article cites 81 articles, 4 of which you can access for free
http://science.sciencemag.org/content/359/6374/466#BIBL

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title Science is a registered trademark of AAAS.