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Sarah Schooler48, Çağan H. Şekercioğlu13,130,31, Nuria Selva131,132, Paola Semenzato133,19, Agnieszka Sergiel131,
Koustubh Sharma134,135,136,137, Avery L. Shawler7, Johannes Signer138, Václav Silovský70, João Paulo Silva139,140,
Richard Simon141, Rachel A. Smiley87, Douglas W. Smith56, Erling J. Solberg60, Diego Ellis-Soto142,143,144,
Orr Spiegel145, Jared Stabach17, Jenna Stacy-Dawes146, Daniel R. Stahler56, John Stephenson147,
Cheyenne Stewart148, Olav Strand60, Peter Sunde149, Nathan J. Svoboda150, Jonathan Swart151,
Jeffrey J. Thompson152,153, Katrina L. Toal141, Kenneth Uiseb154, Meredith C. VanAcker155,17,
Marianela Velilla152,153,156, Tana L. Verzuh87, Bettina Wachter14, Brittany L. Wagler87, Jesse Whittington157,
Martin Wikelski35,158, Christopher C. Wilmers159, George Wittemyer160,43, Julie K. Young161,162,
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COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects
on animals from those of landscape modifications. Using GPS data, we compared movements and road
avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019.
Individual responses were variable with no change in averagemovements or road avoidance behavior, likely due
to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements
increased by 73%, suggesting increased landscape permeability. Animals’ 1-hour 95th percentile
displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint,
indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors,
highlighting variable but substantial impacts of human mobility on wildlife worldwide.

I
n 2020, governments around the world
introduced lockdown measures in an at-
tempt to curb the spread of the novel severe
acute respiratory syndrome coronavirus 2
(SARS CoV-2) virus. This resulted in a

drastic reduction in humanmobility including
human confinement to living quarters, closure
of recreation and protected areas, and reduc-
tions in the movement of vehicles and their
associated by-products (e.g., noise and pol-

lutants) (1). This “anthropause” provides a
unique opportunity to quantify the effects of
human mobility on wildlife by decoupling
these from landscape modification effects
(e.g., roads) (2, 3). It is established that an-
thropogenic landscape modifications affect
how animals use habitats (4) and interact with
each other (5). For example, human infrastruc-
ture may induce various behavioral responses
in animals, including avoidance (6), shifts in

movement speed or habitat selection near
roads (7), and altered diurnal patterns of hab-
itat use (8). In addition to these landscape
modification effects, animals can react directly
to the presence and activity of humans (9).
These often are perceived as a risk (10), which
can lead to changes in habitat use due to the
avoidance of areas heavily used by humans,
increased energetic costs and physiological
stress (11), and altered demography (e.g., re-
duced fecundity) (12). As large-scale, high-
resolution humanmobility data are rare, our
ability to decouple the effects of landscape
modification and human mobility has been
limited. In particular, little is known about
the overall impact of human mobility on ter-
restrial mammalian behavior across species
and continents. Here, wemake use of the quasi-
experimental alteration of human mobility
during COVID-19 lockdowns in early 2020 to
study the effect of human mobility on ani-
mal behavior, specifically on movement and
road avoidance in terrestrial mammals.

Using animal tracking data to study behavioral
changes during lockdowns

We used global positioning system (GPS) track-
ing data to evaluate how 2300 individual ter-
restrial mammals, representing 43 species
across 76 studies (Fig. 1 and table S1), changed
their spatial behavior during the initial 2020
COVID-19 lockdowns comparedwith the same
time period a year earlier. For the initial 2020
lockdown period we included the date of the
first government-mandated lockdown in each
study area (between 1 February and 28 April,
2020) until 15 May, 2020. We used matching
time periods from 2019 as a baseline for com-
parison. Individuals were tracked for an av-
erage of 59 days per observation period (range:
10 to 72 days). We focused on two behaviors:
displacement distance (straight-line distance
between two consecutive GPS locations) and
distance to the nearest road. As changes in
displacement might be scale-dependent, we
considered displacements at 1-hour and 10-day
intervals based on Tucker et al. (13). Changes
in 1-hour displacements reflect immediate re-
sponses to altered human mobility (14). We
expected that reduced humanmobility during
strict lockdowns would lead to an overall re-
duction in 1-hour displacements due to fewer
avoidance and escape responses, or easier ac-
cess to foraging areas due to reduced distur-
bance as has been previously shown for red
deer (14). For the 10-day displacements, we
expected a different response because previous
analyses of the effects of land-modifications
onmammalmovements (13) have shown longer
displacementdistances inareaswith lowhuman
footprint. Accordingly, displacement distances
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at the 10-day scale might be longer under
lockdown conditions as animals might be able
to cross barriers linked to humanmobility dur-
ing such periods (e.g., roads with lower traffic
volumes). For each time scale, we evaluated
the 50th (median) and 95th percentiles of the
displacements. Median displacements rep-
resent a suite of behaviors including resting
and sleeping (1-hour scale) or residency in the
same area (10-day scale). The 95th percentile
eliminates stationary behaviors and repre-
sents longer and more directed movements
such as avoidance behaviors on the 1-hour
time scale and long-distance displacements
at the 10-day time scale (13). Because longer
displacements generally have a greater prob-
ability of encountering humans or infrastruc-
ture, we expected stronger responses for the
95th-percentile displacements.
Although roadsmay benefit some species by

providing foraging opportunities or movement
corridors (15), their effects are more often
negative as they not only create barriers but
also increase mortality and facilitate human
access to remote areas (16). We expected that
declines in vehicular traffic during the early
2020 lockdowns (17) would reduce the per-
ceived risk level and mammals would there-
fore be closer to roads.
To evaluate possible changes in displace-

ments or distance to the nearest roads be-
tween the lockdown and baseline periods, we
calculated log response ratios for each mea-
sure (medians and 95th percentiles of the 1-hour
and 10-day displacements, and distance to
roads) and each individual. Our analyses of the
response ratios involved a two-step process
following previous work (18). First, we used
Bayesian mixed-effects models to examine
the overall effect of lockdowns onmovement
distance and distance to the nearest road (i.e.,
intercept-only model) (19). Second, we used
Bayesian mixed-effects models to examine pos-
sible relationships between the response ratios
and various covariates indicative of environ-
mental context (i.e., lockdown strictness, hu-
man footprint, and productivity) and species
traits (i.e., body mass, diet, activity, and relative
brain size) (19). For both steps of the analyses,
we included random effects for species-study
combined to account for nonindependence
between effect sizes from the same study and/or
species. For the second step of the analysis,
we included the Oxford COVID-19 government
response tracker stringency index (SI) (20) in
our models to examine country-level variation
in lockdown strictness, ranging from 0 (no
lockdown) to 100 (very strict lockdown; e.g.,
confined to home). We used the human foot-
print index [(HFI) 1-km resolution] (21) as a
proxy of direct and indirect human activities
including roads, agriculture, and human pop-
ulation density. The HFI values range from 0
to 50, where low values represent areas rela-

tively undisturbed by humans and high values
represent areas with high human develop-
ment levels. We expected stronger behavioral
responses to lockdowns in areas with a higher
human footprint and in countries with stricter
lockdowns for both displacement distances
and distance to roads. To account formovement
capacity, differences in movements related to
diet, activity cycle, and behavioral flexibility,
we included bodymass (range: 10 to 4000 kg),
diet (carnivore, omnivore, herbivore), activity
(diurnal or nocturnal), and relative brain size as
additional explanatory variables. Finally, we

also included the between-year difference in
normalized difference vegetation index (NDVI)
between 2019 and 2020 to account for potential
differences in seasonality and productivity. We
fit models for the median and 95th percentile
of the 1-hour and 10-day displacements, and
for distance to roads including all covariates
for lockdown strictness, environmental context,
and species traits (19). We report our results as
the percentage increase or decrease in move-
ment distance or distance to roads by back-
transforming the response ratios (19) and
reporting the 95% credible intervals (CI).
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Fig. 1. Distribution of GPS data from 43 terrestrial mammal species. The map represents the mean
Oxford COVID-19 government response tracker stringency index (SI) (20), which measures lockdown
strictness, ranging from 0 (no lockdown) to 100 (very strict lockdown). Values are presented per country
during the 2020 study period (i.e., initial lockdown date to 15 May, 2020), where higher values (red)
represent countries with a stricter lockdown policy. Light gray represents countries with no SI data. SI values
range from 10 to 92. Black points represent the centroids of each study-species combination (n = 90). Map in
Mollweide projection.

Fig. 2. Changes in 1-hour
animal movement during the
COVID-19 lockdowns. (A) Overall
reduction in the 1-hour 95th-
percentile displacements (inter-
cept-only model). (B) Overall
reduction in the 10-day 95th-
percentile displacements (inter-
cept-only model). Colored points
represent individuals (n = 423 and
1725), with point sizes propor-
tional to the inverse sampling
variance of the response ratio for
each individual. The black points
and error bars indicate the overall
effect with 95% CI. The 1-hour
95% CI do not overlap 0 (−0.25 to
−0.01) but the 10-day CI did
overlap 0 (−0.36 to 0.05). Nega-
tive values indicate reduced
movement distances during the
early 2020 lockdowns whereas
positive values indicate increased movement distances during the lockdowns.
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Changes in movement displacements
during lockdowns
We found an average 12% reduction in 1-hour
95th-percentile displacements when evaluat-
ing the impact of only the lockdown itself
(intercept-only model, 95% CI: 1 and 22%,
Fig. 2 and table S2). This may indicate re-
duced avoidance and escape behavior of hu-
mans (e.g., no need to travel longer distances
to avoid humans) (22, 23) as a result of al-
tered human mobility levels during lockdowns.
When exploring potential correlates of this
response, no covariates had an effect that dif-
fered from zero (table S3). For the 1-hour me-
dian displacements, we found no overall effect
(table S2) and again, no effect of the covar-
iates (table S4). Taken together, these results
suggest that responses at the 1-hour scale were
highly variable and not dependent on the se-
lected species traits (body mass, diet, activity,
or relative brain size) or on the variables de-
scribing the local context (lockdown stringency
or HFI).
The overall lockdown response was not dif-

ferent from zero for the 10-day 95th-percentile
or long-distance displacements (15%, 95% CI;
−30 to 5%; Fig. 2B and table S2). However,
when exploring the covariates that might ex-
plain variation in response ratios the 95% CI
of the stringency index did not overlap zero
(table S5), with displacements increasing 73%
on average in areas of stricter lockdown (i.e.,
areas with an SI of 90; Fig. 3A). This may
indicate that tighter restrictions on human
movements, including confinement to living

spaces and reduced humanmobility in green
spaces (e.g., Italy and France; Fig. 1) led to
increased landscape permeability for mam-
mals. This effect of human mobility is sim-
ilar in magnitude to previous work that used
the same displacement metric but examined
the effect of permanent landscape alterations
(land conversion and infrastructure) on ter-
restrial mammal movements (13). Although
this work used a spatial comparison rather
than comparing changes over time within the
same individuals, they found a decline of 67%
of the 10-day 95th-percentile displacements in
areas where the human footprint is high (13).
We foundno effect of the remaining covariates
(HFI, bodymass, diet, activity, or relative brain
size) (table S5).
We found that the 10-day 95th-percentile

displacements in areas with lower lockdown
stringency (SI values 50 to 70) were actually
shorter (on average 22 to 72%) during the
lockdown than in 2019 (Fig. 3A). The re-
duction in movement may reflect increased
human mobility in seminatural areas such
as parks and other green spaces (24, 25). In
fact, green space use by people in some areas
of intermediate lockdown increased up to
350% (25). In addition to the lockdown effects,
seasonality played a role in determining 10-day
movement distances. The 10-day median (fig.
S1) and 95th percentile (Fig. 3B) displacements
were longer during 2020, when we observed
higher NDVI values compared with 2019, which
may have led some individuals to begin their
spring migration or reproduction earlier in

2020. For the 10-day median displacements,
we found no overall lockdown effect (table S2),
no effect of lockdown stringency, and no ef-
fects of the other covariates (HFI, body mass,
diet, activity, or relative brain size) (table S6).
This difference in responses between 95% and
median movements suggests that lockdown
stringency may have affected mainly wide-
ranging behavior such as migratory move-
ments, long-distance dispersal, exploratory
excursions, or long displacements within in-
dividuals’ home ranges.

Mammals were closer to roads during lockdowns

We found no overall lockdown response in the
distance of individuals to roads (−1%, 95% CI;
−5 to 3%, table S2) nor a relationship with the
Stringency Index, NDVI difference, or species
traits (table S7). However, the response ratios
were negatively related to HFI, showing that
animals in areas with a high human footprint
were on average 36% closer to roads during
lockdown (HFI = 36, Fig. 4). In many parts of
the world, traffic volume was substantially
reduced during lockdowns (26, 27), which in
turn lessened the impact of roads on animals,
including reduced barrier effects (15, 28) and
road-kill numbers (17, 29). Our findings add con-
text to these previous results by demonstrating
that not only were road-kill numbers lower dur-
ing lockdown (17, 29), but also animals were
closer on average to roads in human-modified
areas, indicating reduced avoidance.
Overall, we detected three main signals of a

lockdown effect on terrestrial mammal behavior,

Tucker et al., Science 380, 1059–1064 (2023) 9 June 2023 3 of 6

Stringency Index

10
-D

ay
 9

5t
h 

Pe
rc

en
til

e 
M

ov
em

en
t E

ff
ec

t S
iz

e 
(R

R)

-6

-4

-2

0

2

4

50 60 70 80 90 100 -2 -1 0 1 2
NDVI difference (scaled)

-6

-4

-2

0

2

4A B

10
-D

ay
 9

5t
h 

Pe
rc

en
til

e 
M

ov
em

en
t E

ff
ec

t S
iz

e 
(R

R)

Fig. 3. Changes in 10-day animal movement during the COVID-19 lockdowns.
(A) Increasing 10-day 95th-percentile displacements in response to the Stringency
Index and (B) 10-day 95th-percentile displacements were longer during 2020 when
we observed higher NDVI values compared with 2019. Colored points represent
individuals (n = 1725), with point size proportional to the inverse sampling variance

of the response ratio for each individual. The black line is the fitted effect size
(response ratio; RR). The shaded area indicates 95% CI, and the dashed gray line at
zero illustrates no change. Negative values indicate reduced movement distances
during the early 2020 lockdowns whereas positive values indicate increased
movement distances during the lockdowns.
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although they were heterogeneously distrib-
uted across species and populations. These
were (i) reductions in 1-hour 95th-percentile
displacements suggesting relaxed avoidance
behavior, reduced disturbance, and/or fewer
escape responses, (ii) increased 10-day 95th-
percentile displacements under strict lockdown
conditions, suggesting increased landscape
permeability, and (iii) closer proximity to roads
in areas heavily used by humans, suggesting
a reduction in traffic disturbance. A number
of species-specific case studies are consistent
with these findings. For example, evidence
suggests that during the lockdowns, mountain
lions’ (Puma concolor) usual aversion to urban
edges ceased (9), crested porcupine (Hystrix
cristata) abundance increased in urban areas
(30), diurnal activity of invasive Eastern cot-
tontails (Sylvilagus floridanus) increased (30),
and brown bears (Ursus arctos) exploited novel
connectivity corridors (12).
Despite these three general responses to

the lockdowns considerable variation in re-
sponses existed across species and study re-
gions (Fig. 2). This variability highlights that
lockdown impacts are highly context-dependent.
For example, mountain lions explored more
urban areas during the lockdown whereas
other species including American black bears
(Ursus americanus), bobcats (Lynx rufus), and
coyotes (Canis latrans) in the same areas did
not (31). In addition, in our study lockdown
stringency was only measured at the country
level and did not account for local variability
in restrictions.We also note that our datawere
predominantly from Europe and North Amer-
ica so our results should be interpreted with
caution for other regions. Finally, we note that
a givenmovementmetric could capture differ-
ent behaviors in different species, especially at
the 10-day scale, whereas displacements could

capture behaviors ranging from within home
range movements to dispersal.
We show that human mobility is a key driver

of some terrestrial mammal behaviors, with a
magnitude potentially similar to that of land-
scape modifications. Therefore, when evalu-
ating human impacts on animal behavior or
designing mitigation measures both phys-
ical landscape alteration and human mobility
should be taken into consideration [see also
(32)]. Disentangling the effects of human mo-
bility and landscape modification will allow
the implementation of conservation measures
specifically targeted at mitigating the impacts
of human mobility, such as enticements to
adjust timing, frequency, and volume of traffic
in areas important for animalmovement. Mam-
mals have been living with human disturbance
for a long time, but we demonstrate thatmany
wildlife populations retain the capacity to re-
spond to changes in human behavior, providing
a positive outlook for future mitigation strat-
egies designed to maintain animal movement
and the ecosystem functions they provide.
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Fig. 4. Changes in animal
distance to roads during
the COVID-19 lockdowns.
Decreasing distance to roads in
response to the human footprint
index (HFI). Colored points
represent individuals (n = 2160),
with point size proportional to
the inverse sampling variance of
the response ratio for each
individual. The black line is the
predicted effect size (response
ratio; RR). The shaded area
indicates 95% CI, and the dashed
gray line at zero illustrates no
change. Negative values indicate
closer proximity to roads during
the early 2020 lockdowns,
whereas positive values indicate
increased distance from roads
during the lockdowns.
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Editor’s summary
Policies to reduce human movement during the early months of the COVID-19 pandemic produced a kind of natural
experiment to observe how human activities affect animal behavior. Using GPS tracking data from 2300 individual
mammals of 43 species, Tucker et al. documented changes in mammal movement patterns during the spring of 2020
compared with the previous year (see the Perspective by St. Clair and Raymond). In locations with strict lockdown
policies, animals traveled longer distances during the lockdown period. In highly populated areas, mammals moved
less frequently and were closer to roads than they were before the pandemic. These results demonstrate how human
activities constrain animal movement and what happens when those activities cease. —Bianca Lopez
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