Main Points

1) Occupancy modeling wrap-up

-- naive and informed occupancy, continued

-- odds ratios, continued

-- Bui et al

-- a bunch of questions to answer about occupancy modeling
Pre-reading: Tues 31 Oct = Wright et al; Thurs 2 Nov = NA

Extra Credit/Homework #3 will be available today at 5pm in WyoCourses. It is due Tues 7
Nov by 5pm.

Quiz #5 will be assigned today by 5pm in WyoCourses, covers Thurs 19 Oct, Tues 24 Oct, and
today. It is due Thurs 2 Nov by 5pm, along with Quizzes #3-4.

No lecture Thurs 2 Nov. Use this time to finish Quizzes #3-5.
No office hours Thurs 2 Nov.

Terms: Akaike’s Information Criterion (AIC), AAIC, Akaike weights, animosymous






Extra credit: Bui et al described a study to model occupancy of a
“predator” in western Wyoming. What was the predator?



Punchline #1: given a detection probability, we learned how to
calculate the probability of getting an exact detection history,
and also any detection history with x detections in s trials.

Occupancy modeling and the problem of imperfect detection

Day 1 Day 2 Day 3 Day 4 Day 5
Nt v,
D,

Prob(01010) = 0.42(1 - 0.4)3=
0.16 * 0.216 = 0.034

Occupancy modeling and the problem of imperfect detection

Day 1 Day 2 Day 3 Day 4 Day 5
- mt - mt .
N SN,
N

Prob(01010) = 0.034

s
Prob(x = 2) =[x ] pZ(1-p)

= sl/(x!(s-x)!)* 0.034
= 5°4*3*2*1/(2*1 * (3"2*1)) * 0.034
=10*0.034 = 0.34




Punchline #2: we learned about the parameters W and p,
occupancy probability and detection probability. We learned
how to calculate the probability of true absence vs the
probability of a non-detection error.

Consider multiple back-to-back sampling days...

day 1 day 2 day 3

C PR 3
— W p,*1-p;"p;
\ o 4|  Probabilities are multiplied
because only this series of

events could cause the
detection history

Event 1= Event 2 =
true absence non-detection error

day 1 day 2 day 3

A
|
1 llJ + llJ *1-p.*1-p.*1-p.
Probabilities are added

because either event could
cause the detection history




Steps for occupancy modeling

#1: define your study area.




Steps for occupancy modeling

#2: define your sites.




Steps for occupancy modeling

#3: select a sample of sites.




Steps for occupancy modeling

#4: survey sites repeatedly to build detection histories.
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Steps for occupancy modeling

#4: survey sites repeatedly to build detection histories.
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Steps for occupancy modeling

#4: survey sites repeatedly to build detection histories.

0,1,0,1,1
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Steps for occupancy modeling

#5: estimate naive occupancy.
(w_.. = #sites with detections / # sites)

naive

0,1,0,1,1

_ 1,0,1,1,1
L]

= NN
_ 0,0,0,0,0
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Steps for occupancy modeling

#6: estimate proportion of sites with all 0’s in detection
histories.

0,1,0,1,1
e
- 1,0,1,1,1
=
= 0 O
- 0,0,0,0,0
= =
0 n D/
- 0 O
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Steps for occupancy modeling

#7: estimate detection probability (p), and calculate informed
occupancy. LIJinforméd = L'Jnaive/ P

14



# sauger

Site-specific variation in covariates

water temperature
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Site-specific variation in covariates

e linear regression =

y = b, + b,x, where b, is the coefficient of independent
variable x, and y is a continuous dependent variable

# sauger

water temperature
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occurrence of

o
o

sauger

Site-specific variation in covariates

water temperature
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Site-specific variation in covariates

» coefficients of predictors in logistic regression are odds = when
exponentiated to the inverse of the natural log (e.g., 2.71"b,)

occurrence of

and mu
probabi
probabi

sauger

tiplied by 100, these give the percent change in the
ity of an event occurring (e.g., the occurrence

ity)

water temperature
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Consider multiple surveys...

Now consider the following “detection histories” (hi) for s sites:

sitel 1011001101, p=0.60

Site2 0000000000, p=0.00, or NA
site3 1011000111,p=0.80

sited 1010000100,p=0.30 |
site5 0000000000, p=0.00, or NA

site50 1001000101



Consider multiple surveys...

Now consider the following “detection histories” (hi) for s sites:

sitel 1011001101,p=0.60

Site2 0000000000, p=0.00, or NA
site3 1011000111,p=0.80
sited 1010000100,p=0.30
site5 0000000000, p=0.00, or NA

site50 1001000101

W

naive

=35 detections/50 sites = 0.70

LIJinformed = (Lunaive/p) = 0'70 0.875

_, This is usually the average p
across all the sites in a study
20



Consider multiple surveys...

Now consider the following “detection histories” (hi) for s sites:

sitel 1011001101,p=0.60

Site2 0000000000, p=0.00, or NA
site3 1011000111,p=0.80
sited4 1010000100,p=0.30
site5 0000000000, p=0.00, or NA

site50 1001000101

W eq= (W, .io/P) =0.70/0.80 = 0.875

0.875 * 50 ~ 44 sites actually occupied—35 detections, 9 non-detections
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Consider multiple surveys...

Now consider the following “detection histories” (hi) for s sites:

sitel 1011001101,p=0.60

Site2 0000000000, p=0.00, or NA
site3 1011000111,p=0.80
sited 1010000100,p=0.30
site5 0000000000, p=0.00, or NA

site50 1001000101

Wi, formed = (W, ..../P) = _0.70/0.80 =0.875
0.875 * 50 ~ 44 sites actually occupied—35 detections, 9 non-detections

50 — 44 = 6 sites are true absences 22



Steps for occupancy modeling

#8: calculate odds for predictor variables of interest, like forest v
non-forest, or distance to forest. |

i
=
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Consider multiple surveys...

Now consider the following “detection histories” (hi) for s sites:

sitel 1011001101, p=0.60

Site2 0000000000, p=0.00, or NA
site3 1011000111,p=0.80

sited4 1010000100,p=0.30 |
site5 0000000000, p=0.00, or NA

site50 1001000101
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Incorporate predictors for W and p...

Now consider the following “detection histories” (hi) for s sites:

sitel 1011001101, p=0.60

Site2 0000000000, p=0.00, or NA
site3 1011000111,p=0.80

sited4 1010000100,p=0.30 |
site5 0000000000, p=0.00, or NA

site50 1001000101
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Incorporate predictors for W and p...

Now consider the following “detection histories” (hi) for s sites:

sitel
Site2
site3
sited

siteb

site 50

-
o

detection prob (p)

1011001101, p=0.60
0000000000, p=0.00, or NA

1011000111,p=0.80

1010000100,p=0.30 |
0000000000, p=0.00, or NA

10010001 01

© <«

0 distance to road

__ But here, we're using the detection
erobability associated with each site—
each site’s p is a datapoint -



Incorporate predictors for W and p...

Now consider the following “detection histories” (hi) for s sites:

sitel
site2
site3
sited

site5

site 50

-
o

detection prob (p)

1011001101, p=0.60

1011000111,p=0.80

1010000100,p=0.30

0000000000, p=0.00, or NA

0000000000, p=0.00, or NA

10010001 01

0 distance to road

1.

detection prob (p)

0

riparian not




Incorporate predictors for W and p...

Now consider the following “detection histories” (hi) for s sites:

sitel 1011001101, p=0.60

site2 0000000000, p=0.00, or NA
site3 1011000111,p=0.80

site4 1010000100,p=0.30 |
site5 0000000000, p=0.00, or NA

site50 10010001 01
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Modeling occupancy of generalist predators

Akaike’s Information Criterion (AIC)'= an estimator of predictivé ability
of a model, typically used to compare among multiple models

Bui et al
2010.



Modeling occupancy of generalist predators

Akaike’s Information Criterion (AIC)'= an estimator of predictivé ability
of a model, typically used to compare among multiple models

Rules-of-thumb for interpreting AlC
* |ower AIC = better predictive ability

 AAIC = AIC often is scaled such that the
lowest AIC is set to 0.

Bui et al
2010.



Modeling occupancy of generalist predators

TABLE 2. Top-ranked models (out of 10 considered) of raven
occupancy in relation to land cover, study site, and study year.

Occupancy model AAIC

Detectability constant; occupancy varies by 0.0
land cover and study site®

Detectability varies by land cover; occupancy 1.2
varies by land cover and study site

Detectability varies by city/noncity and study 1.5

site; occupancy varies by land cover and
study site
Detectability varies by land cover; occupancy 2.1

varies by study site
Detectability varies by study site; occupancy
varies by land cover and study site

(]
2

TAIC=403.3.

Bui et al
2010.
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Modeling occupancy of generalist predators

Akaike’s Information Criterion (AIC)'= an estimator of predictivé ability
of a model, typically used to compare among multiple models

Rules-of-thumb for interpreting AlC
* |ower AIC = better predictive ability

 AAIC = AIC often is scaled such that the
lowest AIC is set to 0.

e Akaike weights = relative likelihood of
each model; these sum to 1.0.

Bui et al
2010.



Modeling occupancy of generalist predators

TABLE 2. Top-ranked models (out of 10 considered) of raven
occupancy in relation to land cover, study site, and study year.

Akaike
Occupancy model AAIC  weight
Detectability constant; occupancy varies by 0.0 0.37
land cover and study site®
Detectability varies by land cover; occupancy 1.2 0.20
varies by land cover and study site
Detectability varies by city/noncity and study 1.5 0.17

site; occupancy varies by land cover and
study site
Detectability varies by land cover; occupancy 2.1 0.13

varies by study site
Detectability varies by study site; occupancy
varies by land cover and study site

=)
)
S
=)

TAIC=403.3.

Bui et al
2010.

33



Modeling occupancy of generalist predators

Coefficients (SE) from logistic regression on occupancy

Pinedale Jackson
Variable Unstandardized (Odds Ratio Unstandardized (Odds Ratio
Intercept —0.04 N/A 1.64 N/A
City 1.89 (0.87) 6.6 2.19(1.09) 2.9
Oil field 2.33(0.95) 10.3 N/A N/A
Riparian 0.29 (0.79) 1.3 1.49 (0.98) 4.4
Edge 1.22 (1.41) 3.4 —1.24(1.45) 0.29
Contrast-weighted 0.03 (0.09) 1.0 =011 (0.10) 0.90
edge density

Road 0.88 (0.90) 24 1.07 (1.06) 2.9
Hayfield N/A N/A 0.52 (0.82) 1.7
Contagion —0.02 (0.01) 0.98 —0.02 (0.01) 0.98
Distance to road 0.000 (0.0 1.0 0.000 (0.0) 1.0
Distance to landfill 0.000 (0.0 1.0 N/A N/A

Distance to city 0.000 (0.0 1.0 0.000 (0.0) 1.0




Modeling occupancy of generalist predators

Coefficients (SE) from logistic regression on occupancy

Pinedale Jackson

Variable Unstandardized (Odds Ratio Unstandardized (Odds Ratio
Intercept —0.04 N/A 1.64 N/A
City 1.89 (0.87) 6.6 2.19(1.09) 2.9
Oil field 2.33(0.95) 10.3 N/A N/A
Riparian 0.29 (0.79) 1.3 1.49 (0.98) 4.4
Edge 1.22 (1.41) 3.4 —1.24(1.45) 0.29
Contrast-weighted 0.03 (0.09) 1.0 =011 (0.10) 0.90

edge density
Road <088 (0.90) 24 107(106) 290>
Hayfield N/A a = reron e 1.7
Contagion —0.02 (0.01) 0.98 —0.02 (0.01) 0.98
Distance to road 0.000 (0.0 1.0 0.000 (0.0) 1.0
Distance to landfill 0.000 (0.0 1.0 N/A N/A
Distance to city 0.000 (0.0 1.0 0.000 (0.0) 1.0

v

Pinedale = 2.71%0.88 = 2.4

Jackson =2.71M.07 = 2.9
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Discussion #1: W for black-backed woodpecker in beetle-killed stands of
northwestern Wyoming is 0.4. p for black-backed woodpecker in beetle-killed

stands of northwestern Wyoming is 0.3.

After three days of surveying in a beetle-killed stand of northwestern
Wyoming, what is the probability of not detecting black-backed woodpeckers?




Discussion #2: W for black-backed woodpecker in beetle-killed stands of
northwestern Wyoming is 0.4. p for black-backed woodpecker in beetle-killed

stands of northwestern Wyoming is 0.3.

After three days of surveying in a beetle-killed stand of northwestern
Wyoming, what is the probability of detecting black-backed woodpeckers on

any one of the three survey days?

Roger




Discussion #3: W for black-backed woodpecker in beetle-killed stands of
northwestern Wyoming is 0.4. p for black-backed woodpecker in beetle-killed

stands of northwestern Wyoming is 0.3.

After three days of surveying in a beetle-killed stand of northwestern
Wyoming, what is the probability of detecting black-backed woodpeckers on

any two of the three survey days?

Roger




Discussion #4: after surveying NW Wyoming for black-backed woodpeckers,
you generate the following AIC table for W (occupancy probability) and p

(detection probability):

Model AIC Coefficients from logistic regression
¥ constant; p constant 150 Py =0.0; pp=10.0
¥ increases in patches burned within 119 Py=1.7:Pp=0.0

2 years; p constant

¥ constant; p decreases in patches 112
burned within 2 years

¥ increases 1n patches burned within 926
2 years; p decreases within patches |
burned within 2 years

Pw=0.0; pp=-0.8

Py=1.7.pp=-0.8

From your best-supported occupancy model, how
much more/less likely are black-backed woodpeckers
to occur in patches burned within 2 years?

How much more/less likely are black-backed
woodpeckers to be detected in patches burned

within 2 years?




Discussion #1: W for black-backed woodpecker in a beetle-killed stands of
northwestern Wyoming is 0.4. p for black-backed woodpecker in beetle-killed

stands of northwestern Wyoming is 0.3.

After three days of surveying in a beetle-killed stand of northwestern
Wyoming, what is the probability of not detecting black-backed woodpeckers?
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Discussion #2: W for black-backed woodpecker in beetle-killed stands of
northwestern Wyoming is 0.4. p for black-backed woodpecker in beetle-killed

stands of northwestern Wyoming is 0.3.

After three days of surveying in a beetle-killed stand of northwestern
Wyoming, what is the probability of detecting black-backed woodpeckers on

any one of the three survey days?

Roger
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Discussion #3: W for black-backed woodpecker in beetle-killed stands of
northwestern Wyoming is 0.4. p for black-backed woodpecker in beetle-killed

stands of northwestern Wyoming is 0.3.

After three days of surveying in a beetle-killed stand of northwestern
Wyoming, what is the probability of detecting black-backed woodpeckers on

any two of the three survey days?

Roger
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Discussion #4: after surveying NW Wyoming for black-backed woodpeckers,
you generate the following AIC table for W (occupancy probability) and p

(detection probability):

Model AIC Coefficients from logistic regression
¥ constant; p constant 150 Py =0.0; pp=10.0
¥ increases in patches burned within 119 Py=1.7:Pp=0.0

2 years; p constant

¥ constant; p decreases in patches 112
burned within 2 years

¥ increases 1n patches burned within 926
2 years; p decreases within patches |
burned within 2 years

Pw=0.0; pp=-0.8

Py=1.7.pp=-0.8

From your best-supported occupancy model, how
much more/less likely are black-backed woodpeckers
to occur in patches burned within 2 years?

How much more/less likely are black-backed
woodpeckers to be detected in patches burned

within 2 years?




47



Discussion #1: W for black-backed woodpecker in a beetle-killed stands of
northwestern Wyoming is 0.4. p for black-backed woodpecker in beetle-killed

stands of northwestern Wyoming is 0.3.

After three days of surveying in a beetle-killed stand of northwestern
Wyoming, what is the probability of not detecting black-backed woodpeckers?

Event 1 = Event 2 =
true absence non-detection error
A A

| | \
1-W. + W.*1-p.*1-p.*1-p.

= (1-0.4) + [0.4%(0.7)*(0.7)*(0.7)]
= 0.6 + (0.4%*0.34) |

=0.6+0.14




Discussion #2: W for black-backed woodpecker in beetle-killed stands of
northwestern Wyoming is 0.4. p for black-backed woodpecker in beetle-killed
stands of northwestern Wyoming is 0.3.

After three days of surveying in a beetle-killed stand of northwestern
Wyoming, what is the probability of detecting black-backed woodpeckers on
any one of the three survey days?

Step 1: pick a single event, for example detection on day 1,
Roger and non-detections on days 2 and 3

Wi*p;*1-p;*1-p,

= 0.4 * [(0.3)*(0.7)*(0.7)]
= 0.059

This is the probability of getting this

exact event, but we want to know the probability of
getting any event with a single detection in 3 days of
sampling




Discussion #2: W for black-backed woodpecker in beetle-killed stands of
northwestern Wyoming is 0.4. p for black-backed woodpecker in beetle-killed

stands of northwestern Wyoming is 0.3.

After three days of surveying in a beetle-killed stand of northwestern
Wyoming, what is the probability of detecting black-backed woodpeckers on

any one of the three survey days?

| | Step 2: multiply the probability of an exact event by the
Roger number of ways we can get 1 event (detection) out of 3 tries
(days of sampling)

3 | | .
=31 /1Y2)! =6/2 = 3 ways to get 1 event out of

3 trials




Discussion #2: W for black-backed woodpecker in beetle-killed stands of
northwestern Wyoming is 0.4. p for black-backed woodpecker in beetle-killed

stands of northwestern Wyoming is 0.3.

After three days of surveying in a beetle-killed stand of northwestern
Wyoming, what is the probability of detecting black-backed woodpeckers on

any one of the three survey days?

Note: because this is a simple example, we can quickly
Roger check to make sure that our calculation makes sense:

detection on day 1,
non-detections on days 2 and 3

detection on day 2,
non-detections on days 1 and 3

detection on day 3, non-
detections
ondays 2 and 3




Discussion #2: W for black-backed woodpecker in beetle-killed stands of
northwestern Wyoming is 0.4. p for black-backed woodpecker in beetle-killed

stands of northwestern Wyoming is 0.3.

After three days of surveying in a beetle-killed stand of northwestern
Wyoming, what is the probability of detecting black-backed woodpeckers on

any one of the three survey days?

| | Step 2: multiply the probability of an exact event by the
Roger number of ways we can get 1 event (detection) out of 3 tries
(days of sampling)

= 3*0.059 =(0.176)




Discussion #3: W for black-backed woodpecker in beetle-killed stands of
northwestern Wyoming is 0.4. p for black-backed woodpecker in beetle-killed
stands of northwestern Wyoming is 0.3.

After three days of surveying in a beetle-killed stand of northwestern
Wyoming, what is the probability of detecting black-backed woodpeckers on
any two of the three survey days?

| | So, repeat the steps on the previous slides,
Roger but with 2 detections instead of 1.

W.*p,*p,*1-p,

= 0.4 * [(0.3)*(0.3)*(0.7)]




Discussion #3: W for black-backed woodpecker in beetle-killed stands of
northwestern Wyoming is 0.4. p for black-backed woodpecker in beetle-killed

stands of northwestern Wyoming is 0.3.

After three days of surveying in a beetle-killed stand of northwestern
Wyoming, what is the probability of detecting black-backed woodpeckers on

any two of the three survey days?

Note: because this is a simple example, we can quickly
Roger check to make sure that our calculation makes sense:

detections on days 1 and 2,
non-detection on day 3

detections on days 2 and 3,
non-detection on day 1

detection on days 1 and 3,
non-detection on day 2




So, we have calculated:

(1) the pi‘obability of ndt detecting bla-ck-backed woo-dpeckers in3 days.
(2) the probability of detecting black-backed woodpeckers once in 3 days.
(3) the probability of detecting black-backed woodpeckers twice in 3 days.

One final outcome remains: the probability of detecting black-backed
woodpeckers 3 times in 3 days:

Roger

Wi*pi*pi*1-p;

= 0.4 * [(0.3)*(0.3)*(0.3)]




So, we have calculated:

(1) the pi‘obability of ndt detecting bla-ck-backed woo-dpeckers in3 days.
(2) the probability of detecting black-backed woodpeckers once in 3 days.
(3) the probability of detecting black-backed woodpeckers twice in 3 days.

One final outcome remains: the probability of detecting black-backed
woodpeckers 3 times in 3 days:
Note: we can quickly
Roger check to make sure that our calculations makes sense

by adding all the outcomes (everything circled in red
on slides 1-7) and ensuring they sum to ~1.0:

=0.74+0.176 + 0.075+ 0.01 = 1.0

v \ 4
no woodpeckers woodpeckers woodpeckers woodpeckers
detected detected once detected twice detected 3 times




Discussion #4: after surveying NW Wyoming for black-backed woodpeckers,

you generate the following AIC table for W (occupancy probability) and p
(detection probability):

Model AIC Coefficients from logistic regression
¥ constant; p constant 150 Py =0.0; pp=10.0
¥ increases in patches burned within 119 Py=1.7:Pp=0.0

2 years; p constant

¥ constant; p decreases in patches 112 Pw=0.0; pp=-0.8
burned within 2 years

¥ increases 1n patches burned within 926 Py=1.7:Ppp=-0.8
2 years; p decreases within patches |
burned within 2 years

Our best-supported model is the last one, with AIC = 96.
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Discussion #4: after surveying NW Wyoming for black-backed woodpeckers,
you generate the following AIC table for W (occupancy probability) and p

(detection probability):

2 years; p constant

: ¥ constant; p decreases in patches 112
Roge r burned within 2 years
¥ increases 1n patches burned within 926

2 years; p decreases within patches |
burned within 2 years

Model AIC Coefficients from logistic regression
¥ constant; p constant 150 Py =0.0; pp=10.0
¥ increases in patches burned within 119 Py=1.7:Pp=0.0

Pw=0.0; pp=-0.8

Py=1.7:Ppp=-0.8

Our best-supported model is the last one, with AIC = 96.

Black-backed woodpeckers are 2.7171.7 = 4.6 times more
likely (or 460% more likely) to occur in 2-year burns.
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Practice Q #4: after surveying NW Wyoming for black-backed woodpeckers,
you generate the following AIC table for W (occupancy probability) and p

(detection probability):

Model AIC Coefficients from logistic regression
¥ constant; p constant 150 Py =0.0; pp=10.0
¥ increases in patches burned within 119 Py=1.7:Pp=0.0

2 years; p constant

¥ constant; p decreases in patches 112
burned within 2 years

¥ increases 1n patches burned within 926
2 years; p decreases within patches |
burned within 2 years

Pw=0.0; pp=-0.8

Py=1.7.pp=-0.8

Our best-supported model is the last one, with AIC = 96.

Black-backed woodpeckers are 2.7171.7 = 4.6 times more
likely (or 460% more likely) to occur in 2-year burns.

Black-backed woodpeckers are 2.717-0.8 = 2.2 times
less likely (or 220% less likely) to be detected in 2-year burns,

given that they occur there. So, if p outside 2-year burns is

0.4, p in 2-year burns = 0.4/2.2 = 0.18.




Practice Q #4: after surveying NW Wyoming for black-backed woodpeckers,
you generate the following AIC table for W (occupancy probability) and p

(detection probability):

Model AIC Coefficients from logistic regression
¥ constant; p constant 150 Py =0.0; pp=10.0
¥ increases in patches burned within 119 Py=1.7:Pp=0.0

2 years; p constant

¥ constant; p decreases in patches 112
burned within 2 years

¥ increases 1n patches burned within 926
2 years; p decreases within patches |
burned within 2 years

Pw=0.0; pp=-0.8

Py=1.7:Ppp=-0.8

Note: it would be weird (but not impossible) for occupancy
probability to go up while detection probability goes down

with the same predictor.

But this was an example to demonstrate how coefficients

<0.0 should be interpreted.
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Mid-semester evaluation (anonymous, not animosymous)

1) What things would you like to learn more about in class?

2) If there were one thing you could change about class,
what would it be?
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